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S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS

FOR THE SYSTEMS OF DIFFERENTIAL EQUATIONS

WITH PIECEWISE CONSTANT ARGUMENT IN

BANACH SPACES

Hyun Mork Lee*, Hyun Ho Jang**, and Chan Mi Yun***

Abstract. By using of the Banach fixed point theorem, the theory
of a strongly continuous semigroup of operators and resolvent opera-
tor, we investigate the existence and uniqueness of S-asymptotically
ω-periodic mild solutions for some differential (integrodifferential)
equations with piecewise constant argument when specially ω is an
integer.

1. Introduction

The theory of almost periodic functions was introduced in the lit-
erature around 1924-1926 with the pioneering work the Denish mathe-
matician Harald Bohr. Many authors have furthermore generalized in
different directions the notion of almost periodicity for more realistic
decription to real world phenomenon around us. Differential equations
with piecewise constant argument arise in an attempt to the theory of
functional differential equations with continuous argument to differential
equations with discontinuous arguments. The strong interest in these
equations is the fact that they describe hybrid dynamic systems (a con-
tinuous and discrete combination) and, therefore, combine properties of
both differential and difference equations. Furthermore these equations
have the structure of continuous dynamical systems in intervals of unit
length. These equations are thus similar in structure to those found in
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certain sequential-continuous models of disease dynamics as treated by
Busenberg and Cooke since 1982 [2]. The first contribution is due to
Cooke and Wiener in 1984 [4] and Shah and Wiener in 1983 [16]. In
[5], Piao Daxiong investigated the existence of pseudo almost periodic
solutions to the system of differential equations with piecewise constant
argument (EPCA) of the form

u′(t) = Au(t) +Bu([t]) + f(t), t ∈ R,

where A, B are constant matrices and A is nonsingular. In [17], Nguyen
Van Minh and Tran Tat Dat gave suffcient spectral conditions for the
almost automorphy of bounded solutions to differential equations with
piecewise constant argument of the form

u′(t) = Au([t]) + f(t), t ∈ R,

where A is a bounded linear operator in X and f in a X-valued almost
automorphic function.

Let us give a general description of the systems with piecewise con
stant argument [1]. Since the main peculiarity is the involvement of
piecewise constant functions as an arguments, it is reasonable to give at
first the description on these functions.

Fix an interval J ∈ R. Denote by θ = {θi}, θ ∈ J , a strictly ordered
sequence of real numbers such that the set of indices i is an interval of
Z. Let also ζ = {ζi} be another sequence of elements of J . We do not
impose any restriction on ζ.

We say that a function, which is defined on J, is of the η-type, and
denote it η(t) if it is equal to ζi if θi ≤ t ≤ θi+1. This is the most general
type of argument functions.

Specifically, we shall define the following η-type functions. We say
that a function is of the β-type, and denote it β(t) if ζi=θi.

For example, the greatest integer function [t] is a β(t) function with
θi=i, i ∈ Z.

In this paper, specifically we consider that β(t) = [t]. Recently Dim-
bour and Mado [9] worked that the existence of S-asymptotically ω-
periodic solutions for the following equation

u′(t) = Au(t) +A0u([t]) + f(t, u(t)), u(0) = u0,

and Dimbour and Valmorin [10] worked that the existence and uniquenss
of asymptotically antiperiodic solutions in a Banach space for the fol-
lowing equation

u′(t) = Au(t) +A0u([t]) + f(t, u([t]), u(0) = u0,
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where ω is an integer.
Stimulated by above work, we investigate that the existence and

uniqueness of S-asymptotically ω-periodic solutions for the following
system

u′(t) = Au(t) +A0u([t]) + g(t, u([t])), u(0) = u0,(1.1)

where ω is an integer, A0 is a bounded linear operator and A is the
infinitesimal generator of an exponentially stable C0-semigroup acting
on X, [·] is the largest integer function and g is an appropriate function
that will be given later.

2. Preliminaries

To work S-asymptotically ω-periodic functions, it is very convenient
to introduce the following notations: For a Banach space X,

C(R+, X) = {x : R+ → X : x is continuous }
Cb(R+, X) = {x ∈ C(R+, X) : sup

t≥0
∥x(t)∥ < ∞}

C0(R+, X) = {x ∈ Cb(R+, X) : lim
t→∞

∥x(t)∥ = 0}

Cω(R+, X) = {x ∈ Cb(R+, X) : x is ω- periodic }
endowed with the norm ∥f∥∞; = supt≥0 ∥f(t)∥.

We introduce some definitions and lemmas well known from our ref-
erences [2], [11] and [12].

Definition 2.1. A function f ∈ Cb(R+, X) is called almost periodic
if for every ϵ > 0, if there exists an l such that every interval of length
l(ϵ) contains a number τ with property that

∥f(t+ τ)− f(t)∥ < ϵ for every t ∈ R.

Many authors have furthermore generalized the notion of almost pe-
riodicity in different directions.

Definition 2.2. A function f ∈ Cb(R+, X) is called asymptotically
almost periodic if there exist g ∈ AP (R, X) and ϕ ∈ C0(R+, X) such
that f = g + ϕ. Also f is said to be asymptotically ω-periodic when
g ∈ Cω(R+, X).

Definition 2.3. A function f ∈ Cb(R+, X) is said to be S-asymptotically
ω-periodic if there exists an ω > 0 such that

lim
t→∞

∥f(t+ ω)− f(t)∥ = 0.
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In this case, we say that ω is an asymptotic period of f and f is
S-asymptotically ω-periodic. Denote by SAPω(X) the set of such func-
tions. It is clear that (SAPω(X), ∥ · ∥∞) is a Banach space (see [11]).

Let W be a Banach space.

Definition 2.4. A function f ∈ C(R+ × W,X) is called uniformly
S-asymptotically ω-periodic on bounded sets if for every bounded set
K ⊂ W , the set {f(t, x) : t ≥ 0, x ∈ K} is bounded and

lim
t→∞

(f(t+ ω, x)− f(t, x)) = 0

uniformly for x ∈ K.

Definition 2.5. A function f ∈ C(R+ × W,X) is called asymptot-
ically uniformly continuous on bounded sets if for every ϵ > 0 and all
bounded set K ⊂ W there exist constants LK,ϵ ≥ 0 and δK,ϵ > 0 such
that

∥f(t, x)− f(t, y)∥X ≤ ϵ, t ≥ LK,ϵ,

when ∥x− y∥W ≤ δK,ϵ, x, y ∈ K.

Definition 2.6. Let T (t) be the C0-semigroup generated by A and
g ∈ L1(R+, X). The function u(t) ∈ C(R+, X) given by

u(t) = T (t)u0 +

∫ t

0
T (t− s)A0u([s])ds+

∫ t

0
T (t− s)g(s, u([s]))ds,

is the mild solution of Eq.(1.1).

A composition theorem is a great interest when it comes to dealing
with differential equations with piecewise constant arguments.

Theorem 2.7. [12] Assume that f ∈ C(R+ ×W,Z) is uniformly S-
asymptotically ω-periodic on bounded sets and asymptotically uniformly
continuous on bounded sets. If u ∈ SAPω(W ), then the function t →
f(t, u(t)) belong to SAPω(Z).

3. Existence results for S-asymptotically ω-periodic mild so-
lution

To establish our results, we introduce the following conditions.

(H1) There are positive constants M,µ such that

∥T (t)∥ ≤ Me−µt for all t ≥ 0.
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(H2) Assume that g : R+ × X → X is uniformly S-asymptotically ω-
periodic on bounded sets that verifies the Lipschitz condition

∥g(t, x)− g(t, y)∥ ≤ L∥x− y∥ for all x, y ∈ X, t ≥ 0.

Definition 3.1. A solution of Eq.(1.1) on R+ is a function x(t) that
satisfies the conditions:

1. x(t) is continuous on R+.

2. The derivative x
′
(t) exists at each point t ∈ R+, with possible

exception of the point t ∈ R+ where onesided derivatives exists.
3. Eq.(1.1) is satisfied on each interval [n, n+ 1) with n ∈ N.

Lemma 3.2. [9] We assume that the hypothesis (H1) is satisfied.
Then the function L(t) defined by

L(t) = T (t)u0,

where the function L(t) is locally integrable on R+ belongs to SAPω(X).

Lemma 3.3. Assume that the hypothese (H1) is satisfied and ω ∈ N.
Define the nonlinear operator Γ as follows, for each ϕ ∈ SAPω(X)

(Γ1ϕ)(t) =

∫ t

0
T (t− s)A0ϕ([s])ds.

Then the operator Γ1 maps SAPω(X) into itself.

Lemma 3.4. Assume that the hypothesis (H2) is satisfied and ω ∈ N .
Define the nonlinear operator Γ as follows, for each ϕ ∈ SAPω(X)

(Γϕ)(t) =

∫ t

0
T (t− s)g(s, ϕ([s]))ds.

Then the operator Γ maps SAPω(X) into itself.

Proof. Let v =
∫ t
0 T (t− s)g(s, ϕ([s]))ds. Then

v(t+ ω)− v(t)

=

∫ t+ω

0
T (t+ ω − s)g(s, ϕ([s]))ds−

∫ t

0
T (t− s)g(s, ϕ([s]))ds

=

∫ ω

0
T (t+ ω − s)g(s, ϕ([s]))ds+

∫ t+ω

ω
T (t+ ω − s)g(s, ϕ([s]))ds

−
∫ t

0
T (t− s)g(s, ϕ([s]))ds

=

∫ t+ω

t
T (s)g(t+ ω − s, ϕ([t+ ω − s]))ds
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+

∫ t

0
T (t− s)[g(s+ ω, ϕ[s+ ω])− g(s, ϕ(s)]ds

=

∫ t+ω

t
T (s)g(t+ ω − s, ϕ([t+ ω − s]))ds

+

∫ t

0
T (s)[g(t+ ω − s, ϕ([t+ ω − s]))− g(t− s, ϕ([t− s])]ds

=

∫ T

0
T (s)[g(t+ ω − s, ϕ([t+ ω − s]))− g(t− s, ϕ([t+ ω − s]))]ds

+

∫ T

0
T (s)[g(t− s, ϕ([t+ ω − s])− g(t− s, ϕ([t− s]))]ds

+

∫ t

T
T (s)[g(t+ ω − s, ϕ([t+ ω − s])− g(t− s, ϕ([t− s]))]ds

+

∫ t+ω

t
T (s)g(t+ ω − s, ϕ([t+ ω − s]))ds

= I1 + I2 + I3 + I4.

Since the function u(.) is bounded, it follows from the Definition 2.4
that C = sups≥0 ∥g(u, u(s))∥ < ∞.

Put θ := M supt≥0

∫ t
0 e

−µ(t−s)L(s)ds.

Also, since ϕ ∈ SAPω(X), for each ϵ > 0, there exists T
′
(> t) such

that ∥ϕ(t + ω) − ϕ(t)∥ < ϵ. Put T = [T
′
] + 1, for ϵ > 0, let ϵ′ =

min{ µ
M , 1θ}(

ϵ
3).

Choose T > 0 such that the following conditions hold:

(i) e−µT ≤ ϵµ/9CM.
(ii) ∥ϕ([t+ ω])− ϕ([t])∥ ≤ ϵ′,
(iii) ∥g(t+ ω, x)− g(t, x)∥ ≤ ϵ′,

for all t ≥ T.

Let t ≥ 2T . Since t− s ≥ t− T ≥ T for 0 ≤ s ≤ T , we get

∥I1∥ =
∥∥∥ ∫ T

0
T (s)[g(t+ ω − s, ϕ([t− s] + ω))

− g(t− s, ϕ([t− s] + ω)]ds
∥∥∥

≤ Mϵ′
∫ T

0
e−µsds ≤ ϵ′ · M

µ
=

µ

M
· ϵ
3
· M
µ

=
ϵ

3
,
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∥I2∥ =
∥∥∥ ∫ T

0
T (s)[g(t− s, ϕ([t− s] + ω)− g(t− s, ϕ([t− s]))ds

∥∥∥
≤ ϵ′M

∫ T

0
e−µsL(t− s)ds ≤ ϵ′M

∫ t

0
e−µsL(t− s)ds

≤ ϵ′θ = (
1

θ

ϵ

3
)θ =

ϵ

3
,

∥I3∥ =
∥∥∥ ∫ t

T
T (s)[g(t+ ω − s, ϕ(t− s] + ω)− g(t− s, ϕ([t− s])]ds

∥∥∥
≤ M

∫ t

T
e−µs2Cds ≤ 2CM

µ
e−µT ,

∥I4∥ =
∥∥∥ ∫ t+ω

t
T (s)g(t+ ω − s, ϕ([t− s] + ω)ds

∥∥∥
≤ M

∫ t+ω

t
e−µsCds ≤ CM

µ
e−µT ,

∥|I3∥+ ∥I4∥ ≤ 2CM

µ
e−µT +

CM

µ
e−µT ≤ 3CM

µ
e−µT

≤ 3CM

µ
· ϵµ

9CM
=

ϵ

3
.

Combining these estimates,

∥v(t+ ω)− v(t)∥ ≤ ϵ

for t ≥ 2T . Therefore we know v ∈ SAPω(X).

Theorem 3.5. Assume that the hypotheses (H1) and (H2) are sat-

isfied and ω is an integer. If ||A0||M+LM
µ < 1, then the Eq.(1.1) has a

unique S-asymptotically ω-periodic mild solution.

Proof. Define the operator Γ : SAPω(X) → SAPω(X) by

Γu(t) = T (t)u0 +

∫ t

0
T (t− s)A0u([s])ds+

∫ t

0
T (t− s)g(s, u[s]))ds

for t ≥ 0. Then

v(t) =

∫ t

0
T (t− s)g(s, u[s])ds

belongs to SAPω(X) by Lemma 3.3. The Lemma 3.2 shows that T (t)u0
is an S-asymptotically ω-periodic.
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Then Γ maps SAPω(X) into itself. Γ is well defined. For x, y ∈
SAPω(X), we have

∥Γx(t)− Γy(t)∥ ≤
∥∥∥ ∫ t

0
T (t− s)A0(x([s])− y([s]))ds

∥∥∥
+

∥∥∥ ∫ t

0
T (t− s)(g(s, x([s]))− g(s, y([s])))ds

∥∥∥
≤

∫ t

0
Me−µ∥A0∥ds∥x− y∥∞

+

∫ t

0
LMe−µds∥x− y∥∞

≤ ∥A0∥M + LM

µ
∥x− y∥∞

Therefore Γ is a contraction and there exists a unique fixed point
u ∈ SAPω(X). This function u is an S-asymptotically ω-periodic mild
solution of Eq.(1.1).

4. Existence results of S-asymptotically ω-periodic mild so-
lution for some partial integrodifferential equation

Consider the following partial integrodifferential equation with piece-
wise constant argument

u
′
(t) = Au(t) +

∫ t

0
B(t− s)u(s)ds+ f(t, u([t])), t ≥ 0,

u(0) = u0,(4.1)

where A : D(A) ⊆ X → X is the infinitesimal generator of a C0 -
semigroup on a Banach space X and B(t) : D(B(t) ⊆ X → X for t ≥ 0
are densely defined closed linear operators in a Banach space (X, ∥ · ∥).

We assume that D(A) ⊂ D(B(t)) for every t ≥ 0 and that f : [0,∞)×
X → is a suitable function.

To obtain our results, we use the theory of resolvent operators. This
theory is related to abstract integrodifferential equations in a similar
manner as the semigroup theory is related to first order linear abstract
partial differential equations.

[D(A)] represents the space D(A) endowed with graph norm given
by ∥x∥A = ∥x∥+ ∥Ax∥.
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Definition 4.1. [6] A family {R(t) : t ≥ 0} of continuous linear
operators on X is called a resolvent operator for Eq.(4.1) if the following
conditions are fulfilled.

1. For each x ∈ X, R(0)x = x and R(·)x ∈ C([0,∞);X).
2. The map R : [0,∞) → L([D(A)]) is strongly continuous .
3. For each y ∈ D(A) , the function t → R(t)y is continuously differ-

entiable and

d

dt
R(t)y = AR(t)y +

∫ t

0
B(t− s)R(s)yds

= R(t)Ay +

∫ t

0
R(t− s)B(s)yds, t ≥ 0.

We assume that there exists a unique resolvent operator for Eq.(4.1).
Motivated from work of [3], we define the following definition of mild
solution.

(H3) There are positive constants M,µ such that

∥R(t)∥ ≤ Me−µt for all t ≥ 0.

Definition 4.2. A function u ∈ C(R+, X) is called a mild solution
of Eq.(4.1) if u satisfies

u(t) = R(t)u0 +

∫ t

0
R(t− s)f(s, u([s]))ds, t ≥ 0,

u(0) = u0 ∈ X.

Lemma 4.3. [12] Assume that f ∈ C(R+ × W ;X) is uniformly S-
asymptotically ω-periodic on bounded sets and asymptotically uniformly
continuous on bounded sets. If u ∈ SAPω(W ) , then the function t →
f(t, u(t)) belongs to SAPω(X).

Lemma 4.4. Let u ∈ SAPω(X). Then

v(t) =

∫ t

0
R(t− s)u([s])ds ∈ SAPω(X).

Proof.

∥v(t)∥ ≤
∫ t

0
∥R(t− s)∥∥u([s])∥ds

≤
∫ t

0
Me−µ(t−s)∥u([s])∥ds

≤ M

µ
∥u∥∞.
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Thus ∥v∥∞ = supt≥0∥v(t)∥ ≤ M
µ ∥u∥∞, where v ∈ Cb(R+;X).

Since u ∈ SAPω(X), for ϵ > 0, we select T ′ > 0 such that

∥u(t+ ω)− u(t)∥ ≤ ϵ for all t ≥ T ′

and ∫ ∞

T ′
e−µsds ≤ ϵ.

Put T = [T ′]+1 and let t ≥ 2T . Since t−s ≥ t−T ≥ T for 0 ≥ s ≥ T ,
we get:

v(t+ω)− v(t)

=

∫ t+ω

0
R(t+ ω − s)u([s])ds−

∫ t

0
R(t− s)u([s])ds

=

∫ ω

0
R(t+ ω − s)u([s])ds+

∫ t+ω

ω
R(t+ ω − s)u([s])ds

−
∫ t

0
R(t− s)u([s])ds

= −
∫ t

t+ω
R(s)u([t+ ω − s])ds+

∫ t

0
R(t− s)u([s+ ω])ds

−
∫ t

0
R(t− s)u([s])ds

=

∫ t+ω

t
R(s)u([t+ ω − s])ds+

∫ t

0
R(t− s)[u([s+ ω])− u([s])]ds

=

∫ t+ω

t
R(s)u([t+ ω − s])ds+

∫ T

0
R(t− s)[u([s+ ω])− u([s])]ds

+

∫ t

T
R(t− s)[u([s+ ω])− u([s])]ds.

Hence, for t ≥ 2T we obtain

∥v(t+ ω)− v(t)∥

≤
∫ t+ω

0
∥R(s)∥∥u([t+ ω − s])∥ds+

∫ T

0
∥R(t− s)∥[u([s+ ω])− u([s])∥ds

+

∫ t

T
∥R(t− s)∥[u([s+ ω])− u([s])∥ds
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≤
∫ t+ω

0
∥R(s)∥∥u([t+ ω − s])∥ds

+

∫ t

t−T
∥R(t− s)∥[u([s+ ω])− u([s])∥ds

−
∫ t−T

0
∥R(s)∥∥[u([t− s+ ω])− u([t− s])]∥ds

≤
∫ t+ω

0
∥R(s)∥∥u([t+ ω − s])∥ds

+

∫ t

t−T
∥R(s)∥∥(u([t− s] + ω)− u([t− s]))∥ds

+

∫ t−T

0
∥R(s)∥∥(u([t− s] + ω)− u([t− s]))∥ds

≤ M∥u∥∞
∫ t+ω

t
e−µsds+ 2M∥u∥∞

∫ t

t−T
e−µsds+ ϵM

∫ t−T

0
e−µsds

≤ M∥u∥∞
∫ t+ω

t
e−µsds+ 2M∥u∥∞

∫ t

T
e−µsds+ ϵM

∫ t

0
e−µsds

≤ 3M∥u∥∞
∫ ∞

T
e−µsds+

M

µ
ϵ

= M(3∥u∥∞ +
1

µ
)ϵ.

Hence limt→∞(v(t+ ω)− v(t)) = 0, which completes the proof.

Theorem 4.5. Assume that f : R+ ×X → X uniformly S-asympto-
tically ω-periodic on bounded sets function that verifies the Lipschitz
condition

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥,

for all x, y ∈ X and every t ≥ 0.

If LM/µ < 1, then Eq.(4.1) has a unique S-asymptotically ω-periodic
mild solution.

Proof. Define the operator Γ : SAPω(X) → SAPω(X) given by

Γu(t) = R(t)x0 +

∫ t

0
R(t− s)f(s, u[s]))s, t ≥ 0.
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By Lemma 4.3, f(·, u(·)) ∈ SAPω(X). Let v(t) =
∫ t
0 R(t−s)f(s, u[s])ds.

Then

∥v(t)∥ ≤
∫ t

0
∥R(t− s)∥∥f(s, u([s]))∥ds

≤
∫ t

0
Me−µ(t−s)∥f(s, u([s]))∥ds

≤ M

µ

∫ t

0
∥f(s, u([s]))∥ds.

Thus ∥v∥∞ = supt≥0∥v(t)∥ ≤ M
µ ∥u∥∞. Hence v ∈ Cb(R+;X).

Note that for any ϵ > 0, we select T > 0 such that

∥u(t+ ω)− u(t)∥ ≤ ϵ for all t ≥ T

and
∫∞
T e−µsds ≤ ϵ.

For any t ≥ 2T , by the similar calculation of the proof in Lemma 4.4.

∥v(t+ ω)− v(t)∥ ≤ M(3∥g∥∞ +
LM

µ
∥u∥∞)ϵ.

Thus v(t) ∈ SAPω(X). Also, since R(·)x0 ∈ SAPω(X) (see in Lemma
3.2), Γu(t) ∈ SAPω(X) (Γ is well defined!). We will show that Γ is a
contraction.

For u, v ∈ SAPω(X), we have

∥Γu(t)− Γv(t)| ≤ ∥
∫ t

0
R(t− s)(f(s, u([s])− f(s, v([s]))ds∥

≤
∫ t

0
∥R(t− s)∥∥f(s, u([s])− f(s, v([s]))∥ds

≤
∫ t

0
LMe−µ(t−s)∥u([s])− v([s])∥ds

≤ LM

µ
∥u− v∥∞.

Therefore Γ is a contraction. By the Banach fixed point theorem, there
exists a unique fixed point u ∈ SAPω(X). This function u is an S-
asymptotically ω-periodic mild solution of Eq.(4.1). The proof is com-
plete.

5. Application

As an application [10], we give an example as follows.
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∂u

∂t
(t, x) =


∂2u
∂2x

+ αu([t], x) + g(t, u([t], x)), t ∈ R+, x ∈ [0, π], α ∈ R
u(t, 0) = u(t, π) = 0, t ∈ R+

u(0) = u0 ∈ X.

We assume that (X, || · ||)=L2(0, π), ∥ · ∥2 and define

D(A) = {ν, ν,, ∈ L2([0, π]), ν(0) = ν(π) = 0},

and

Aν = ν,,.

A is the infinetesimal generator of a semigroup T (t) on L2[0, ϕ] with

∥T (t)∥ ≤ e−t, t ≥ 0.

The operator A0 : L2([0, π]) → L2([0, π]) defined by A0(ν) = αν is
linear and bounded with ∥A0∥ = |α|.

Thus, the above partial differential equation can be rewritten as an
abstract system of the Eq.(1.1), when u(t)s = u(t, s).

Theorem 5.1. We assume that ω ∈ N, the above system has an
unique S-asymptotically ω-periodic mild solution if |α|+ L < 1.

Proof. We have M = 1, δ = 1, ||A0|| = |α| and apply Theorem
3.5.
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